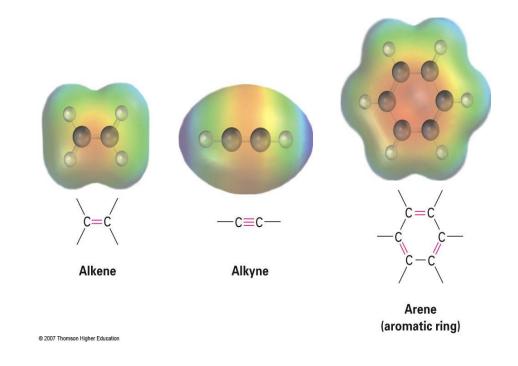
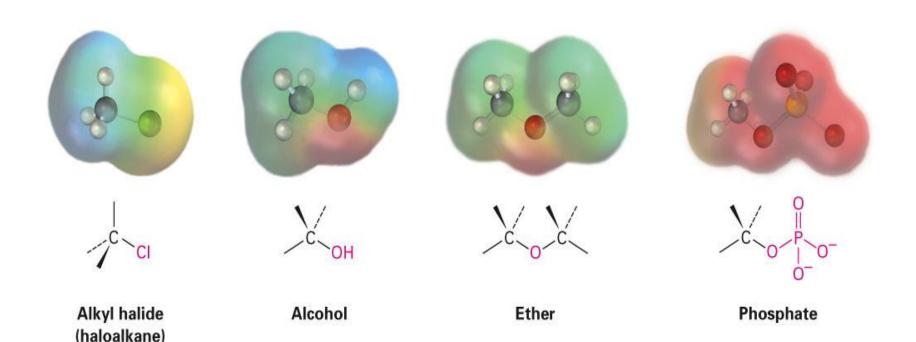
Organic Chemistry: John McMurry

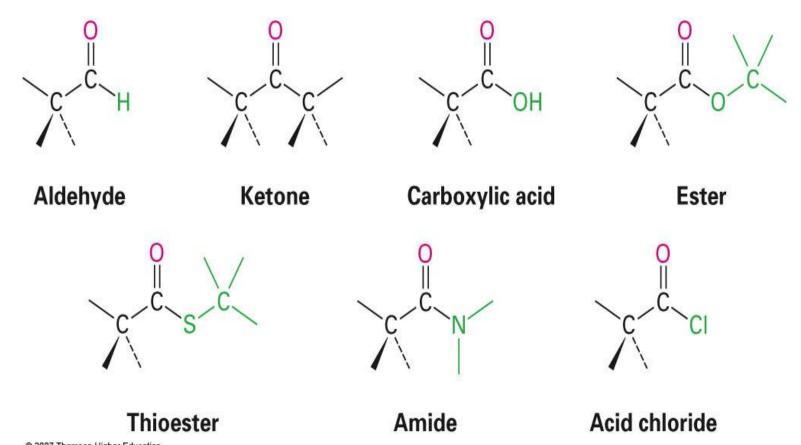

Dr. Rouaida Abou Samra

الزمر الوظيفية الحاوية على روابط مختلفة C-C

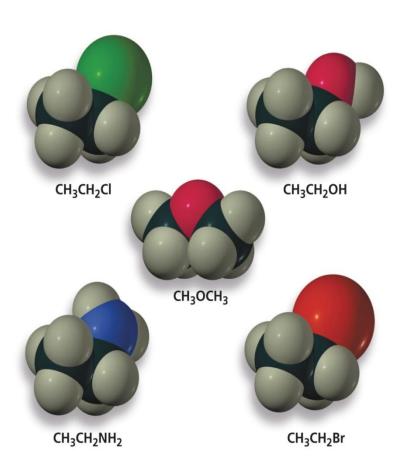
Alkenesتحتوي الالكنات: على رابطة ثنائية double bond C=C


تحتوي الالكينات: Alkynes على رابطة ثلاثية triple على bond C≡C

تحتوي الارينات: Arenes على انواع خاصة من الروابط بحيث تتناوب الاربطة المضاعفة مع الاربطة الاحادية


Functional Groups with Carbon Singly Bonded to an Electronegative Atom

مجموعات وظيفية مؤلفة من كربون مرتبط برابطة احادية مع ذرة كهرسلبية



© 2007 Thomson Higher Education

Groups with a Carbon–Oxygen Double Bond (Carbonyl Groups) اوکسجین (Carbonyl Groups) مجموعات وظیفیة من کربون

Organic Chemistry 7th Edition John McMurry

المركبات العضوية Alkanes الإلكانات

الألكانات Alkanes

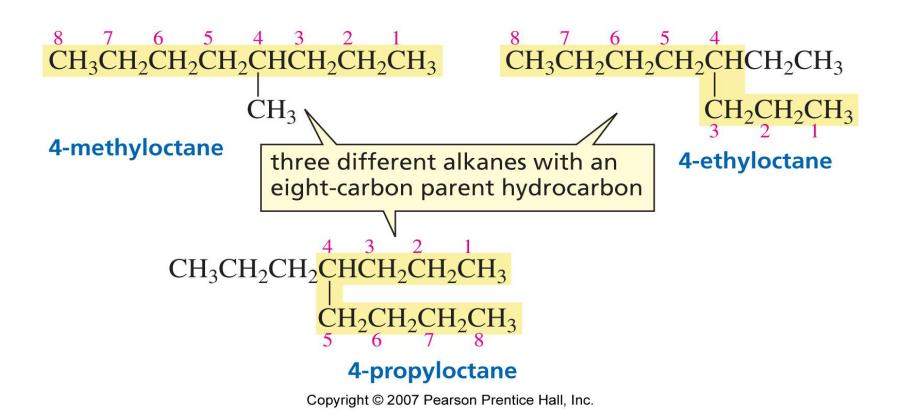
Alkanes are hydrocarbons containing only single bonds

• الالكانات هي فحوم هيدروجينية(hydrocarbons) تحتوي على رابطة احادية -C-C-

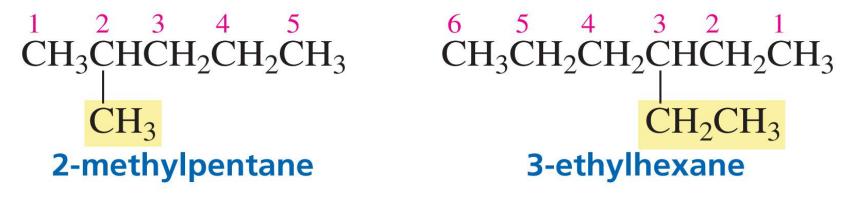
General formula: C_nH_{2n+2} : الصيغة العامة لها

Number of carbons	Molecular formula	Name	Condensed structure	Boiling point (°C)	Melting point (°C)	Density ^a (g/mL)
1	CH ₄	methane	CH ₄	-167.7	-182.5	
2	C_2H_6	ethane	CH ₃ CH ₃	-88.6	-183.3	
3	C_3H_8	propane	CH ₃ CH ₂ CH ₃	-42.1	-187.7	
4	C_4H_{10}	butane	CH ₃ CH ₂ CH ₂ CH ₃	-0.5	-138.3	
5	C_5H_{12}	pentane	$CH_3(CH_2)_3CH_3$	36.1	-129.8	0.5572
6	C_6H_{14}	hexane	$CH_3(CH_2)_4CH_3$	68.7	-95.3	0.6603
7	C_7H_{16}	heptane	$CH_3(CH_2)_5CH_3$	98.4	-90.6	0.6837
8	C_8H_{18}	octane	$CH_3(CH_2)_6CH_3$	125.7	-56.8	0.7026
9	C_9H_{20}	nonane	$CH_3(CH_2)_7CH_3$	150.8	-53.5	0.7177
10	$C_{10}H_{22}$	decane	$CH_3(CH_2)_8CH_3$	174.0	-29.7	0.7299
11	$C_{11}H_{24}$	undecane	$CH_3(CH_2)_9CH_3$	195.8	-25.6	0.7402
12	$C_{12}H_{26}$	dodecane	$CH_3(CH_2)_{10}CH_3$	216.3	-9.6	0.7487
13	$C_{13}H_{28}$	tridecane	$CH_3(CH_2)_{11}CH_3$	235.4	-5.5	0.7546
:	i	:	:	:	:	:
20	$C_{20}H_{42}$	eicosane	$CH_3(CH_2)_{18}CH_3$	343.0	36.8	0.7886
21	$C_{21}H_{44}$	heneicosane	$CH_3(CH_2)_{19}CH_3$	356.5	40.5	0.7917
:	:	•	:	:	:	:
30	$C_{30}H_{62}$	triacontane	CH ₃ (CH ₂) ₂₈ CH ₃	449.7	65.8	0.8097

Copyright © 2007 Pearson Prentice Hall, Inc.

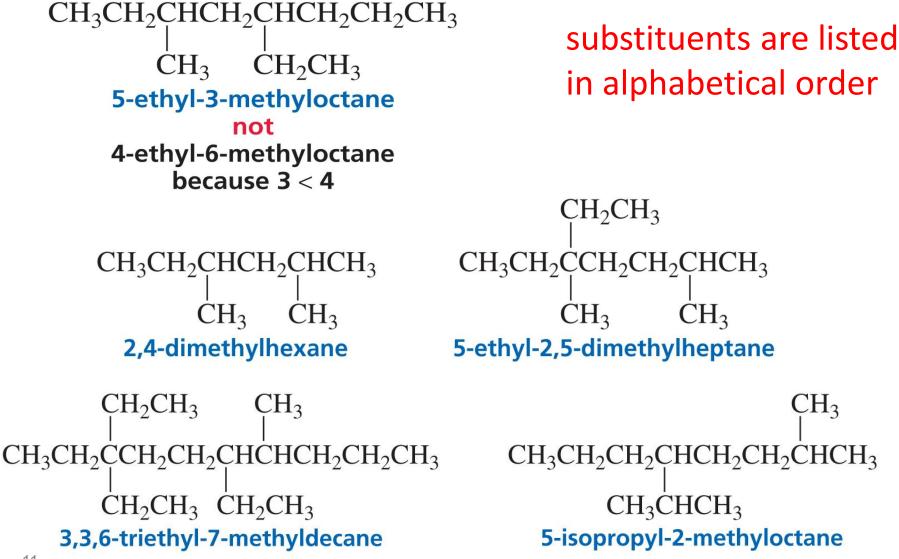

Naming Alkanes

 Compounds are given systematic names by a process that uses



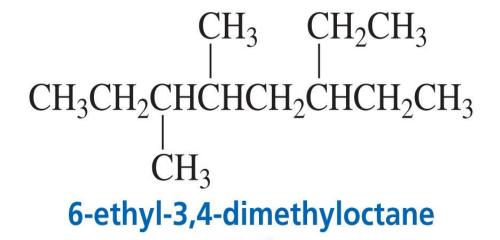

Nomenclature of Alkanes تسمية الإلكانات

Determine the number of carbons in the longest chain


Number the chain so that the substituent gets the lowest number

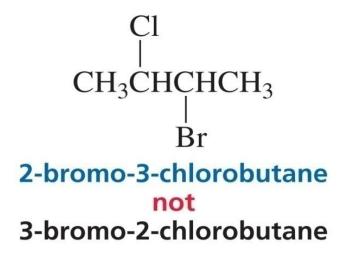


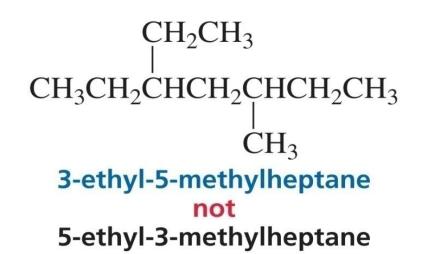
Copyright © 2007 Pearson Prentice Hall, Inc.


3. Number the substituents to yield the lowest possible number in the number of the compound

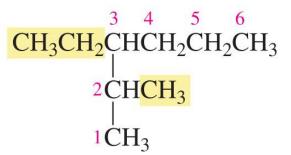
4. Assign the lowest possible numbers to all of the substituents

- 2,2,4-trimethylpentane not
- 2,4,4-trimethylpentane because 2 < 4

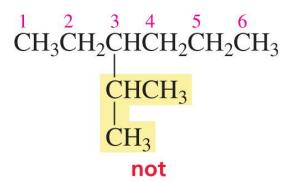



3-ethyl-5,6-dimethyloctane because 4 < 5

not


Copyright © 2007 Pearson Prentice Hall, Inc.

If the same substituent numbers are obtained in both directions, the first group cited receives the lower number



6. If a compound has two or more chains of the same length, the parent hydrocarbon is the chain with the greatest number of substituents

3-ethyl-2-methylhexane (two substituents)

3-isopropylhexane (one substituent)

Copyright © 2007 Pearson Prentice Hall, Inc.

Nomenclature of Alkyl Substituents

Removing a hydrogen from an alkane results in an alkyl substituent

Numbers are used only for systematic names but not common names

CH₃
CH₃CHCH₂CH₂CH₃
isohexane
2-methylpentane

common name: systematic name:

المماكبات البنبوية

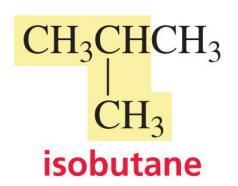
- المماكبات التي تختلف بكيفية ترتيب الذرات في السلاسل تسمى المماكبات البنبوبة
- مركبات اخرى غير الالكانات يمكن ان تكون مماكبات بنيوية الواحدة بالنسبة للاخرى
 - يجب ان يكون لها نفس الصبغة الجزيئية

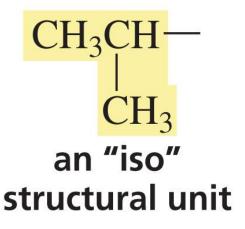
Table 3.2	Number of Alkane Isomers	Different carbon skeletons	CH ₃		
Formula	Number of isomers	C ₄ H ₁₀	CH ₃ CHCH ₃	and	CH ₃ CH ₂ CH ₂ CH ₃
C ₆ H ₁₄	5		2-Methylpropane (isobutane)		Butane
C ₇ H ₁₆	9				
C ₈ H ₁₈	18	Different functional	CH ₃ CH ₂ OH	and	CH ₃ OCH ₃
C_9H_{20}	35	groups	Ethanol		Dimethyl ether
C ₁₀ H ₂₂	75	C ₂ H ₆ O	Ethanor		Dimetryrether
C ₁₅ H ₃₂	4,347	Different position of	NIII		
$C_{20}H_{42}$	366,319	functional groups	NH ₂		
C ₃₀ H ₆₂	4,111,846,763	C ₃ H ₉ N	CH₃ĊHCH₃	and	CH ₃ CH ₂ CH ₂ NH ₂
⊇ 2007 Thomson Higher Education			Isopropylamine		Propylamine

© 2007 Thomson Higher Education

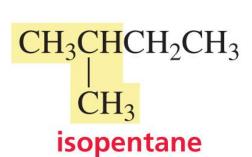
Constitutional Isomers

- Isomers that differ in how their atoms are arranged in chains are called constitutional isomers
- Compounds other than alkanes can be constitutional isomers of one another
- They must have the same molecular formula to be isomers


Table 3.2	Number of Alkane Isomers		
Formula	Number of isomers		
C ₆ H ₁₄	5		
C ₇ H ₁₆	9		
C ₈ H ₁₈	18		
C ₉ H ₂₀	35		
C ₁₀ H ₂₂	75		
C ₁₅ H ₃₂	4,347		
$C_{20}H_{42}$	366,319		
C ₃₀ H ₆₂	4,111,846,763		


Different carbon skeletons C ₄ H ₁₀	CH ₃ CH ₃ CHCH ₃	and	CH ₃ CH ₂ CH ₂ CH ₃
	2-Methylpropane (isobutane)		Butane
Different functional	CH ₃ CH ₂ OH	and	CH ₃ OCH ₃
groups C ₂ H ₆ O	Ethanol		Dimethyl ether
Different position of functional groups C ₃ H ₉ N	NH ₂ CH ₃ CHCH ₃	and	CH ₃ CH ₂ CH ₂ NH ₂
© 2007 Thomson Higher Education	Isopropylamine		Propylamine

2007 Th ----- I list -- E d -- di--


Constitutional isomers have the same molecular formula, but their atoms are linked differently

CH₃CH₂CH₂CH₃ butane

CH₃CH₂CH₂CH₂CH₃
pentane

CH₃
|
CH₃CCH₃
|
CH₃
|
CH₃

Copyright © 2007 Pearson Prentice Hall, Inc.

تمثيل بنية الالكانات

يمكن تمثيل صيغة الالكانات باشكال مختلفة:

❖ بنية مكثفة (Condensed) لا تكتب فيها الروابط ، تكتب فيها الذرات فقط مثال

CH₃CH₂CH₂CH₃ (butane) CH₃(CH₂)₂CH₃ (butane)

♦ بنیة منشورة تکتب فیها جمیع الروابط مع الکربون والهیدروجین
 ♦ او مختصرة علی روابط بین کربون کربون و عدد ذرات الهیدروجین

CH₃CH₂CH₂CH₃

 $CH_3(CH_2)_2CH_3$

Alkyl Groups

- Alkyl group remove one H from an alkane (a part of a structure)
- General abbreviation "R" (for Radical, an incomplete species or the "rest" of the molecule)
- Name: replace -ane ending of alkane with -yl ending
 - CH₃ is "methyl" (from methane)
 - CH₂CH₃ is "ethyl" from ethane

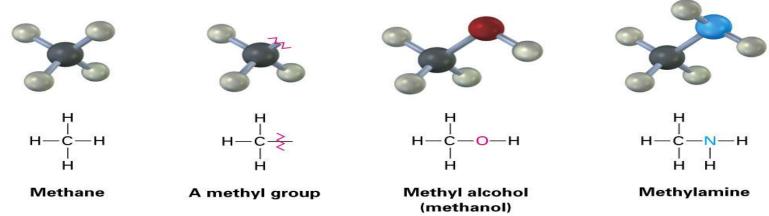


Table 3.4 Some Straight-Chain Alkyl Groups

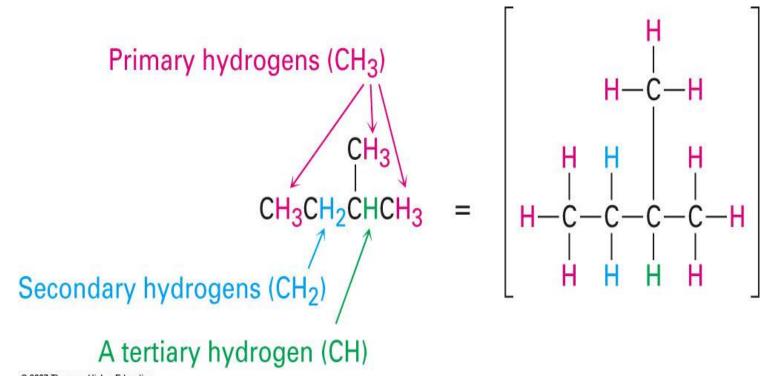
Alkane	Name	Alkyl group	Name (abbreviation)
CH ₄	Methane	-CH ₃	Methyl (Me)
CH ₃ CH ₃	Ethane	-CH ₂ CH ₃	Ethyl (Et)
CH ₃ CH ₂ CH ₃	Propane	-CH ₂ CH ₂ CH ₃	Propyl (Pr)
CH ₃ CH ₂ CH ₂ CH ₃	Butane	$-CH_2CH_2CH_2CH_3$	Butyl (Bu)
CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	Pentane	-CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	Pentyl, or amyl

© 2007 Thomson Higher Education

Types of Alkyl groups

- Classified by the connection site
 - a carbon at the end of a chain (primary alkyl group)
 - a carbon in the middle of a chain (secondary alkyl group)
 - a carbon with three carbons attached to it (tertiary alkyl group)

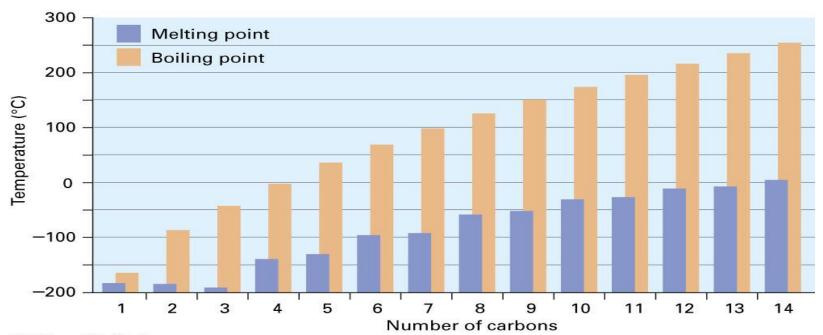
Primary carbon (1°) is bonded to one other carbon.


© 2007 Thomson Higher Education

Secondary carbon (2°) is bonded to two other carbons.

Tertiary carbon (3°) is bonded to three other carbons.

Quaternary carbon (4°) is bonded to four other carbons.

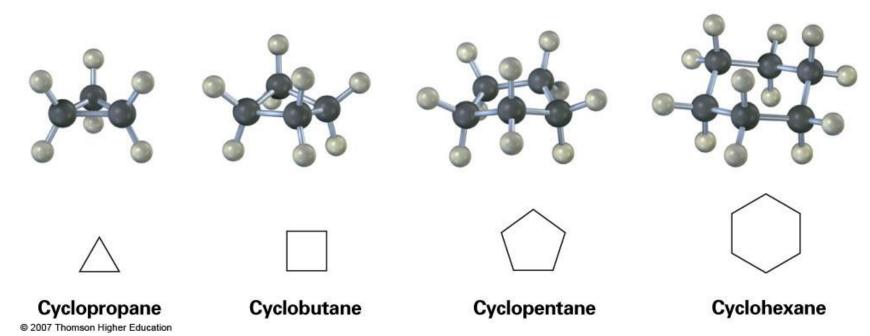

© 2007 Thomson Higher Education

الصفات الكيميائية: Chemical Properties

- Called paraffins (low affinity compounds) because they do not react as most chemicals
- They will burn in a flame, producing carbon dioxide, water, and heat
- They react with Cl₂ in the presence of light to replace H's with Cl's (not controlled)

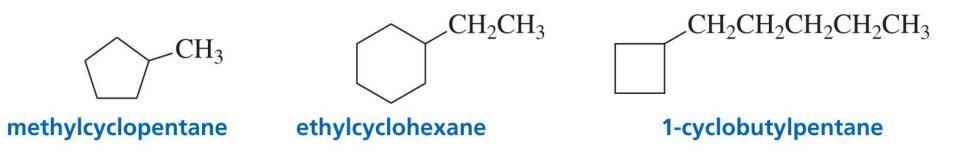
الصفات الفيزيائية: Physical Properties

- Boiling points and melting points increase as size of alkane increases
- Dispersion forces increase as molecule size increases, resulting in higher melting and boiling points
 - تزداد كل من درجة الغليان درجة الانصهار مع زيادة طول الإلكان
 - تزداد قوى التبعثر مع زيادة حجم الجزيئة مما يزيد من درجة الغليان والانصهار

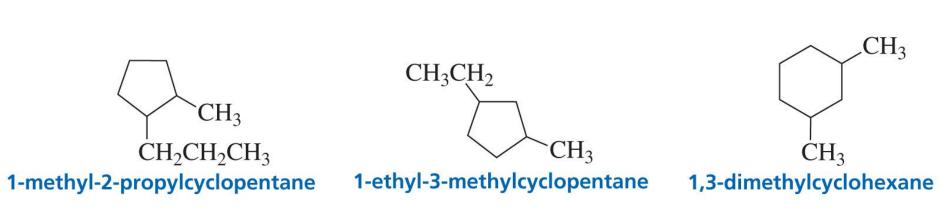

Organic Chemistry 7th Edition John McMurry

المركبات العضوية Cycloalkanes الإلكانات الحلقية

Cycloalkanes

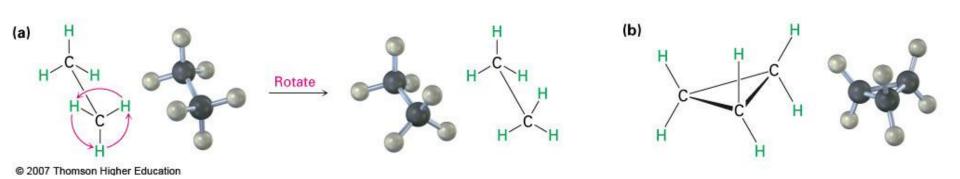

تسمية الالكانات الحلقية

- Cycloalkanes are saturated cyclic hydrocarbons
- Have the general formula (C_nH_{2n})
 - Cycloalkanes هي مركبات عضوية مشبعة
 - (C_nH_{2n}) : الصيغة العامة لها



Nomenclature of Cycloalkanes

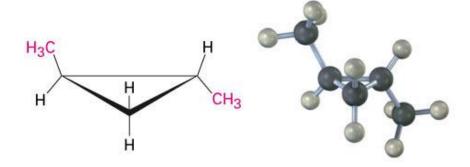
1. No number is needed for a single substituent on a ring


2. Name the two substituents in alphabetical order

Copyright © 2007 Pearson Prentice Hall, Inc.

Cis-Trans Isomerism in Cycloalkanes التماكب المقرون – المفروق في الالكانات الحلقية

- Cycloalkanes are less flexible than open-chain alkanes
- Much less conformational freedom in cycloalkanes



- Because of their cyclic structure, cycloalkanes have 2 faces as viewed edge-on "top" face "bottom" face
- Therefore, isomerism is possible in substituted cycloalkanes
- There are two different 1,2-dimethyl-cyclopropane isomers

cis-1,2-Dimethylcyclopropane

© 2007 Thomson Higher Education

trans-1,2-Dimethylcyclopropane

المماكبات الفراغية: Stereoisomerism

 المركبات التي ترتبط ذراتها بنفس الترتيب لكن تختلف في شكلها ثلاثي الابعاد تعرف باسم المماكبات الفراغية

Constitutional isomers (different connections between atoms)

and

Stereoisomers

(same connections but different three-dimensional geometry)

H₃C CH₃

and

© 2007 Thomson Higher Education