Organic Chemistry: John McMurry # Dr. Rouaida Abou Samra ## الزمر الوظيفية الحاوية على روابط مختلفة C-C Alkenesتحتوي الالكنات: على رابطة ثنائية double bond C=C تحتوي الالكينات: Alkynes على رابطة ثلاثية triple على bond C≡C تحتوي الارينات: Arenes على انواع خاصة من الروابط بحيث تتناوب الاربطة المضاعفة مع الاربطة الاحادية # Functional Groups with Carbon Singly Bonded to an Electronegative Atom مجموعات وظيفية مؤلفة من كربون مرتبط برابطة احادية مع ذرة كهرسلبية © 2007 Thomson Higher Education # Groups with a Carbon–Oxygen Double Bond (Carbonyl Groups) اوکسجین (Carbonyl Groups) مجموعات وظیفیة من کربون # Organic Chemistry 7th Edition John McMurry المركبات العضوية Alkanes الإلكانات #### الألكانات Alkanes Alkanes are hydrocarbons containing only single bonds • الالكانات هي فحوم هيدروجينية(hydrocarbons) تحتوي على رابطة احادية -C-C- General formula: C_nH_{2n+2} : الصيغة العامة لها | Number of carbons | Molecular
formula | Name | Condensed structure | Boiling point (°C) | Melting
point (°C) | Density ^a (g/mL) | |-------------------|----------------------|-------------|--|--------------------|-----------------------|-----------------------------| | 1 | CH ₄ | methane | CH ₄ | -167.7 | -182.5 | | | 2 | C_2H_6 | ethane | CH ₃ CH ₃ | -88.6 | -183.3 | | | 3 | C_3H_8 | propane | CH ₃ CH ₂ CH ₃ | -42.1 | -187.7 | | | 4 | C_4H_{10} | butane | CH ₃ CH ₂ CH ₂ CH ₃ | -0.5 | -138.3 | | | 5 | C_5H_{12} | pentane | $CH_3(CH_2)_3CH_3$ | 36.1 | -129.8 | 0.5572 | | 6 | C_6H_{14} | hexane | $CH_3(CH_2)_4CH_3$ | 68.7 | -95.3 | 0.6603 | | 7 | C_7H_{16} | heptane | $CH_3(CH_2)_5CH_3$ | 98.4 | -90.6 | 0.6837 | | 8 | C_8H_{18} | octane | $CH_3(CH_2)_6CH_3$ | 125.7 | -56.8 | 0.7026 | | 9 | C_9H_{20} | nonane | $CH_3(CH_2)_7CH_3$ | 150.8 | -53.5 | 0.7177 | | 10 | $C_{10}H_{22}$ | decane | $CH_3(CH_2)_8CH_3$ | 174.0 | -29.7 | 0.7299 | | 11 | $C_{11}H_{24}$ | undecane | $CH_3(CH_2)_9CH_3$ | 195.8 | -25.6 | 0.7402 | | 12 | $C_{12}H_{26}$ | dodecane | $CH_3(CH_2)_{10}CH_3$ | 216.3 | -9.6 | 0.7487 | | 13 | $C_{13}H_{28}$ | tridecane | $CH_3(CH_2)_{11}CH_3$ | 235.4 | -5.5 | 0.7546 | | : | i | : | : | : | : | : | | 20 | $C_{20}H_{42}$ | eicosane | $CH_3(CH_2)_{18}CH_3$ | 343.0 | 36.8 | 0.7886 | | 21 | $C_{21}H_{44}$ | heneicosane | $CH_3(CH_2)_{19}CH_3$ | 356.5 | 40.5 | 0.7917 | | : | : | • | : | : | : | : | | 30 | $C_{30}H_{62}$ | triacontane | CH ₃ (CH ₂) ₂₈ CH ₃ | 449.7 | 65.8 | 0.8097 | Copyright © 2007 Pearson Prentice Hall, Inc. ### **Naming Alkanes** Compounds are given systematic names by a process that uses ## Nomenclature of Alkanes تسمية الإلكانات Determine the number of carbons in the longest chain Number the chain so that the substituent gets the lowest number Copyright © 2007 Pearson Prentice Hall, Inc. # 3. Number the substituents to yield the lowest possible number in the number of the compound # 4. Assign the lowest possible numbers to all of the substituents - 2,2,4-trimethylpentane not - 2,4,4-trimethylpentane because 2 < 4 3-ethyl-5,6-dimethyloctane because 4 < 5 not Copyright © 2007 Pearson Prentice Hall, Inc. If the same substituent numbers are obtained in both directions, the first group cited receives the lower number 6. If a compound has two or more chains of the same length, the parent hydrocarbon is the chain with the greatest number of substituents 3-ethyl-2-methylhexane (two substituents) 3-isopropylhexane (one substituent) Copyright © 2007 Pearson Prentice Hall, Inc. #### Nomenclature of Alkyl Substituents Removing a hydrogen from an alkane results in an alkyl substituent Numbers are used only for systematic names but not common names CH₃ CH₃CHCH₂CH₂CH₃ isohexane 2-methylpentane common name: systematic name: #### المماكبات البنبوية - المماكبات التي تختلف بكيفية ترتيب الذرات في السلاسل تسمى المماكبات البنبوبة - مركبات اخرى غير الالكانات يمكن ان تكون مماكبات بنيوية الواحدة بالنسبة للاخرى - يجب ان يكون لها نفس الصبغة الجزيئية | Table 3.2 | Number of Alkane
Isomers | Different carbon skeletons | CH ₃ | | | |---------------------------------|-----------------------------|---------------------------------|------------------------------------|-----|---| | Formula | Number of isomers | C ₄ H ₁₀ | CH ₃ CHCH ₃ | and | CH ₃ CH ₂ CH ₂ CH ₃ | | C ₆ H ₁₄ | 5 | | 2-Methylpropane (isobutane) | | Butane | | C ₇ H ₁₆ | 9 | | | | | | C ₈ H ₁₈ | 18 | Different functional | CH ₃ CH ₂ OH | and | CH ₃ OCH ₃ | | C_9H_{20} | 35 | groups | Ethanol | | Dimethyl ether | | C ₁₀ H ₂₂ | 75 | C ₂ H ₆ O | Ethanor | | Dimetryrether | | C ₁₅ H ₃₂ | 4,347 | Different position of | NIII | | | | $C_{20}H_{42}$ | 366,319 | functional groups | NH ₂ | | | | C ₃₀ H ₆₂ | 4,111,846,763 | C ₃ H ₉ N | CH₃ĊHCH₃ | and | CH ₃ CH ₂ CH ₂ NH ₂ | | ⊇ 2007 Thomson Higher Education | | | Isopropylamine | | Propylamine | © 2007 Thomson Higher Education #### **Constitutional Isomers** - Isomers that differ in how their atoms are arranged in chains are called constitutional isomers - Compounds other than alkanes can be constitutional isomers of one another - They must have the same molecular formula to be isomers | Table 3.2 | Number of Alkane
Isomers | | | |---------------------------------|-----------------------------|--|--| | Formula | Number of isomers | | | | C ₆ H ₁₄ | 5 | | | | C ₇ H ₁₆ | 9 | | | | C ₈ H ₁₈ | 18 | | | | C ₉ H ₂₀ | 35 | | | | C ₁₀ H ₂₂ | 75 | | | | C ₁₅ H ₃₂ | 4,347 | | | | $C_{20}H_{42}$ | 366,319 | | | | C ₃₀ H ₆₂ | 4,111,846,763 | | | | Different carbon
skeletons
C ₄ H ₁₀ | CH ₃

CH ₃ CHCH ₃ | and | CH ₃ CH ₂ CH ₂ CH ₃ | |---|---|-----|---| | | 2-Methylpropane
(isobutane) | | Butane | | Different functional | CH ₃ CH ₂ OH | and | CH ₃ OCH ₃ | | groups
C ₂ H ₆ O | Ethanol | | Dimethyl ether | | Different position of functional groups C ₃ H ₉ N | NH ₂

CH ₃ CHCH ₃ | and | CH ₃ CH ₂ CH ₂ NH ₂ | | © 2007 Thomson Higher Education | Isopropylamine | | Propylamine | 2007 Th ----- I list -- E d -- di-- Constitutional isomers have the same molecular formula, but their atoms are linked differently CH₃CH₂CH₂CH₃ butane CH₃CH₂CH₂CH₂CH₃ pentane CH₃ | CH₃CCH₃ | CH₃ | CH₃ Copyright © 2007 Pearson Prentice Hall, Inc. #### تمثيل بنية الالكانات يمكن تمثيل صيغة الالكانات باشكال مختلفة: ❖ بنية مكثفة (Condensed) لا تكتب فيها الروابط ، تكتب فيها الذرات فقط مثال CH₃CH₂CH₂CH₃ (butane) CH₃(CH₂)₂CH₃ (butane) ♦ بنیة منشورة تکتب فیها جمیع الروابط مع الکربون والهیدروجین ♦ او مختصرة علی روابط بین کربون کربون و عدد ذرات الهیدروجین CH₃CH₂CH₂CH₃ $CH_3(CH_2)_2CH_3$ ## **Alkyl Groups** - Alkyl group remove one H from an alkane (a part of a structure) - General abbreviation "R" (for Radical, an incomplete species or the "rest" of the molecule) - Name: replace -ane ending of alkane with -yl ending - CH₃ is "methyl" (from methane) - CH₂CH₃ is "ethyl" from ethane Table 3.4 Some Straight-Chain Alkyl Groups | Alkane | Name | Alkyl group | Name (abbreviation) | |---|---------|--|---------------------| | CH ₄ | Methane | -CH ₃ | Methyl (Me) | | CH ₃ CH ₃ | Ethane | -CH ₂ CH ₃ | Ethyl (Et) | | CH ₃ CH ₂ CH ₃ | Propane | -CH ₂ CH ₂ CH ₃ | Propyl (Pr) | | CH ₃ CH ₂ CH ₂ CH ₃ | Butane | $-CH_2CH_2CH_2CH_3$ | Butyl (Bu) | | CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ | Pentane | -CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ | Pentyl, or amyl | © 2007 Thomson Higher Education ### Types of Alkyl groups - Classified by the connection site - a carbon at the end of a chain (primary alkyl group) - a carbon in the middle of a chain (secondary alkyl group) - a carbon with three carbons attached to it (tertiary alkyl group) Primary carbon (1°) is bonded to one other carbon. © 2007 Thomson Higher Education Secondary carbon (2°) is bonded to two other carbons. Tertiary carbon (3°) is bonded to three other carbons. Quaternary carbon (4°) is bonded to four other carbons. © 2007 Thomson Higher Education # الصفات الكيميائية: Chemical Properties - Called paraffins (low affinity compounds) because they do not react as most chemicals - They will burn in a flame, producing carbon dioxide, water, and heat - They react with Cl₂ in the presence of light to replace H's with Cl's (not controlled) ## الصفات الفيزيائية: Physical Properties - Boiling points and melting points increase as size of alkane increases - Dispersion forces increase as molecule size increases, resulting in higher melting and boiling points - تزداد كل من درجة الغليان درجة الانصهار مع زيادة طول الإلكان - تزداد قوى التبعثر مع زيادة حجم الجزيئة مما يزيد من درجة الغليان والانصهار # Organic Chemistry 7th Edition John McMurry المركبات العضوية Cycloalkanes الإلكانات الحلقية # Cycloalkanes ### تسمية الالكانات الحلقية - Cycloalkanes are saturated cyclic hydrocarbons - Have the general formula (C_nH_{2n}) - Cycloalkanes هي مركبات عضوية مشبعة - (C_nH_{2n}) : الصيغة العامة لها #### Nomenclature of Cycloalkanes 1. No number is needed for a single substituent on a ring 2. Name the two substituents in alphabetical order Copyright © 2007 Pearson Prentice Hall, Inc. # Cis-Trans Isomerism in Cycloalkanes التماكب المقرون – المفروق في الالكانات الحلقية - Cycloalkanes are less flexible than open-chain alkanes - Much less conformational freedom in cycloalkanes - Because of their cyclic structure, cycloalkanes have 2 faces as viewed edge-on "top" face "bottom" face - Therefore, isomerism is possible in substituted cycloalkanes - There are two different 1,2-dimethyl-cyclopropane isomers cis-1,2-Dimethylcyclopropane © 2007 Thomson Higher Education trans-1,2-Dimethylcyclopropane ### المماكبات الفراغية: Stereoisomerism المركبات التي ترتبط ذراتها بنفس الترتيب لكن تختلف في شكلها ثلاثي الابعاد تعرف باسم المماكبات الفراغية Constitutional isomers (different connections between atoms) and **Stereoisomers** (same connections but different three-dimensional geometry) H₃C CH₃ and © 2007 Thomson Higher Education